Mechanics of Undulatory Swimming in a Frictional Fluid
نویسندگان
چکیده
The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.
منابع مشابه
Undulatory swimming in sand: subsurface locomotion of the sandfish lizard.
The desert-dwelling sandfish (Scincus scincus) moves within dry sand, a material that displays solid and fluidlike behavior. High-speed x-ray imaging shows that below the surface, the lizard no longer uses limbs for propulsion but generates thrust to overcome drag by propagating an undulatory traveling wave down the body. Although viscous hydrodynamics can predict swimming speed in fluids such ...
متن کاملLarge-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics.
The load against which the swimming muscles contract, during the undulatory swimming of a fish, is composed principally of hydrodynamic pressure forces and body inertia. In the past this has been analysed, through an equation for bending moments, for small-amplitude swimming, using Lighthill's elongated-body theory and a 'vortex-ring panel method', respectively, to compute the hydrodynamic forc...
متن کاملThe physiology and mechanics of undulatory swimming: a student laboratory exercise using medicinal leeches.
The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle mechanics, hydrostatic skeletons, and the physiologica...
متن کاملUndulatory Swimming: How Traveling Waves Are Produced and Modulated in Sunfish (lepomis Gibbosus)
We have developed an experimental procedure in which the in situ locomotor muscles of dead fishes can be electrically stimulated to generate swimming motions. This procedure gives the experimenter control of muscle activation and the mechanical properties of the body. Using pumpkinseed sunfish, Lepomis gibbosus, we investigated the mechanics of undulatory swimming by comparing the swimming kine...
متن کاملCorrections to the theory and the optimal line in the swimming diagram of Taylor (1952).
The analysis of undulatory swimming gaits requires knowledge of the fluid forces acting on the animal body during swimming. In his classical 1952 paper, Taylor analysed this problem using a 'resistive-force' theory. The theory was used to characterize the undulatory gaits that result in the smallest energy dissipation to the fluid for a given swim velocity. The optimal gaits thus found were com...
متن کامل